ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.00737
11
0

Coreference Resolution: Are the eliminated spans totally worthless?

4 January 2021
Xin Tan
Longyin Zhang
Guodong Zhou
ArXivPDFHTML
Abstract

Various neural-based methods have been proposed so far for joint mention detection and coreference resolution. However, existing works on coreference resolution are mainly dependent on filtered mention representation, while other spans are largely neglected. In this paper, we aim at increasing the utilization rate of data and investigating whether those eliminated spans are totally useless, or to what extent they can improve the performance of coreference resolution. To achieve this, we propose a mention representation refining strategy where spans highly related to mentions are well leveraged using a pointer network for representation enhancing. Notably, we utilize an additional loss term in this work to encourage the diversity between entity clusters. Experimental results on the document-level CoNLL-2012 Shared Task English dataset show that eliminated spans are indeed much effective and our approach can achieve competitive results when compared with previous state-of-the-art in coreference resolution.

View on arXiv
Comments on this paper