ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.00524
11
3

One-shot Representational Learning for Joint Biometric and Device Authentication

2 January 2021
Sudipta Banerjee
Arun Ross
    CVBM
ArXiv (abs)PDFHTML
Abstract

In this work, we propose a method to simultaneously perform (i) biometric recognition (i.e., identify the individual), and (ii) device recognition, (i.e., identify the device) from a single biometric image, say, a face image, using a one-shot schema. Such a joint recognition scheme can be useful in devices such as smartphones for enhancing security as well as privacy. We propose to automatically learn a joint representation that encapsulates both biometric-specific and sensor-specific features. We evaluate the proposed approach using iris, face and periocular images acquired using near-infrared iris sensors and smartphone cameras. Experiments conducted using 14,451 images from 15 sensors resulted in a rank-1 identification accuracy of upto 99.81% and a verification accuracy of upto 100% at a false match rate of 1%.

View on arXiv
Comments on this paper