ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.15784
57
20
v1v2 (latest)

Understanding Politics via Contextualized Discourse Processing

31 December 2020
Rajkumar Pujari
Dan Goldwasser
ArXiv (abs)PDFHTML
Abstract

Politicians often have underlying agendas when reacting to events. Arguments in contexts of various events reflect a fairly consistent set of agendas for a given entity. In spite of recent advances in Pretrained Language Models (PLMs), those text representations are not designed to capture such nuanced patterns. In this paper, we propose a Compositional Reader model consisting of encoder and composer modules, that attempts to capture and leverage such information to generate more effective representations for entities, issues, and events. These representations are contextualized by tweets, press releases, issues, news articles, and participating entities. Our model can process several documents at once and generate composed representations for multiple entities over several issues or events. Via qualitative and quantitative empirical analysis, we show that these representations are meaningful and effective.

View on arXiv
Comments on this paper