ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.15515
13
105

Neural Machine Translation: A Review of Methods, Resources, and Tools

31 December 2020
Zhixing Tan
Shuo Wang
Zonghan Yang
Gang Chen
Xuancheng Huang
Maosong Sun
Yang Liu
    3DV
    AI4TS
ArXivPDFHTML
Abstract

Machine translation (MT) is an important sub-field of natural language processing that aims to translate natural languages using computers. In recent years, end-to-end neural machine translation (NMT) has achieved great success and has become the new mainstream method in practical MT systems. In this article, we first provide a broad review of the methods for NMT and focus on methods relating to architectures, decoding, and data augmentation. Then we summarize the resources and tools that are useful for researchers. Finally, we conclude with a discussion of possible future research directions.

View on arXiv
Comments on this paper