ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.14500
12
35

A Paragraph-level Multi-task Learning Model for Scientific Fact-Verification

28 December 2020
Xiangci Li
Gully A. Burns
Nanyun Peng
    MU
ArXivPDFHTML
Abstract

Even for domain experts, it is a non-trivial task to verify a scientific claim by providing supporting or refuting evidence rationales. The situation worsens as misinformation is proliferated on social media or news websites, manually or programmatically, at every moment. As a result, an automatic fact-verification tool becomes crucial for combating the spread of misinformation. In this work, we propose a novel, paragraph-level, multi-task learning model for the SciFact task by directly computing a sequence of contextualized sentence embeddings from a BERT model and jointly training the model on rationale selection and stance prediction.

View on arXiv
Comments on this paper