22
28

Implicit Feature Pyramid Network for Object Detection

Abstract

In this paper, we present an implicit feature pyramid network (i-FPN) for object detection. Existing FPNs stack several cross-scale blocks to obtain large receptive field. We propose to use an implicit function, recently introduced in deep equilibrium model (DEQ), to model the transformation of FPN. We develop a residual-like iteration to updates the hidden states efficiently. Experimental results on MS COCO dataset show that i-FPN can significantly boost detection performance compared to baseline detectors with ResNet-50-FPN: +3.4, +3.2, +3.5, +4.2, +3.2 mAP on RetinaNet, Faster-RCNN, FCOS, ATSS and AutoAssign, respectively.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.