ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.12496
10
5

Active Sampling for Accelerated MRI with Low-Rank Tensors

23 December 2020
Zichang He
Bo Zhao
Zheng-Wei Zhang
    MedIm
ArXivPDFHTML
Abstract

Magnetic resonance imaging (MRI) is a powerful imaging modality that revolutionizes medicine and biology. The imaging speed of high-dimensional MRI is often limited, which constrains its practical utility. Recently, low-rank tensor models have been exploited to enable fast MR imaging with sparse sampling. Most existing methods use some pre-defined sampling design, and active sensing has not been explored for low-rank tensor imaging. In this paper, we introduce an active low-rank tensor model for fast MR imaging. We propose an active sampling method based on a Query-by-Committee model, making use of the benefits of low-rank tensor structure. Numerical experiments on a 3-D MRI data set demonstrate the effectiveness of the proposed method.

View on arXiv
Comments on this paper