ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.12471
13
7

A Principle Solution for Enroll-Test Mismatch in Speaker Recognition

23 December 2020
Lantian Li
Dong Wang
Jiawen Kang
Renyu Wang
Jingqian Wu
Zhendong Gao
Xiao Chen
ArXivPDFHTML
Abstract

Mismatch between enrollment and test conditions causes serious performance degradation on speaker recognition systems. This paper presents a statistics decomposition (SD) approach to solve this problem. This approach decomposes the PLDA score into three components that corresponding to enrollment, prediction and normalization respectively. Given that correct statistics are used in each component, the resultant score is theoretically optimal. A comprehensive experimental study was conducted on three datasets with different types of mismatch: (1) physical channel mismatch, (2) speaking behavior mismatch, (3) near-far recording mismatch. The results demonstrated that the proposed SD approach is highly effective, and outperforms the ad-hoc multi-condition training approach that is commonly adopted but not optimal in theory.

View on arXiv
Comments on this paper