ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.12084
11
2

Limitation of Acyclic Oriented Graphs Matching as Cell Tracking Accuracy Measure when Evaluating Mitosis

22 December 2020
Ye Chen
Yuankai Huo
    VOT
ArXivPDFHTML
Abstract

Multi-object tracking (MOT) in computer vision and cell tracking in biomedical image analysis are two similar research fields, whose common aim is to achieve instance level object detection/segmentation and associate such objects across different video frames. However, one major difference between these two tasks is that cell tracking also aim to detect mitosis (cell division), which is typically not considered in MOT tasks. Therefore, the acyclic oriented graphs matching (AOGM) has been used as de facto standard evaluation metrics for cell tracking, rather than directly using the evaluation metrics in computer vision, such as multiple object tracking accuracy (MOTA), ID Switches (IDS), ID F1 Score (IDF1) etc. However, based on our experiments, we realized that AOGM did not always function as expected for mitosis events. In this paper, we exhibit the limitations of evaluating mitosis with AOGM using both simulated and real cell tracking data.

View on arXiv
Comments on this paper