ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.10531
9
4

A Graph Attention Based Approach for Trajectory Prediction in Multi-agent Sports Games

18 December 2020
Ding Ding
Huimin Huang
ArXivPDFHTML
Abstract

This work investigates the problem of multi-agents trajectory prediction. Prior approaches lack of capability of capturing fine-grained dependencies among coordinated agents. In this paper, we propose a spatial-temporal trajectory prediction approach that is able to learn the strategy of a team with multiple coordinated agents. In particular, we use graph-based attention model to learn the dependency of the agents. In addition, instead of utilizing the recurrent networks (e.g., VRNN, LSTM), our method uses a Temporal Convolutional Network (TCN) as the sequential model to support long effective history and provide important features such as parallelism and stable gradients. We demonstrate the validation and effectiveness of our approach on two different sports game datasets: basketball and soccer datasets. The result shows that compared to related approaches, our model that infers the dependency of players yields substantially improved performance. Code is available at https://github.com/iHeartGraph/predict

View on arXiv
Comments on this paper