ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.10485
12
7

RAILS: A Robust Adversarial Immune-inspired Learning System

18 December 2020
Ren Wang
Tianqi Chen
Stephen Lindsly
A. Rehemtulla
Alfred Hero
I. Rajapakse
    AAML
ArXivPDFHTML
Abstract

Adversarial attacks against deep neural networks are continuously evolving. Without effective defenses, they can lead to catastrophic failure. The long-standing and arguably most powerful natural defense system is the mammalian immune system, which has successfully defended against attacks by novel pathogens for millions of years. In this paper, we propose a new adversarial defense framework, called the Robust Adversarial Immune-inspired Learning System (RAILS). RAILS incorporates an Adaptive Immune System Emulation (AISE), which emulates in silico the biological mechanisms that are used to defend the host against attacks by pathogens. We use RAILS to harden Deep k-Nearest Neighbor (DkNN) architectures against evasion attacks. Evolutionary programming is used to simulate processes in the natural immune system: B-cell flocking, clonal expansion, and affinity maturation. We show that the RAILS learning curve exhibits similar diversity-selection learning phases as observed in our in vitro biological experiments. When applied to adversarial image classification on three different datasets, RAILS delivers an additional 5.62%/12.56%/4.74% robustness improvement as compared to applying DkNN alone, without appreciable loss of accuracy on clean data.

View on arXiv
Comments on this paper