ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.09855
31
157

Infinite Nature: Perpetual View Generation of Natural Scenes from a Single Image

17 December 2020
Andrew Liu
Richard Tucker
Varun Jampani
A. Makadia
Noah Snavely
Angjoo Kanazawa
    VGen
ArXivPDFHTML
Abstract

We introduce the problem of perpetual view generation - long-range generation of novel views corresponding to an arbitrarily long camera trajectory given a single image. This is a challenging problem that goes far beyond the capabilities of current view synthesis methods, which quickly degenerate when presented with large camera motions. Methods for video generation also have limited ability to produce long sequences and are often agnostic to scene geometry. We take a hybrid approach that integrates both geometry and image synthesis in an iterative `\emph{render}, \emph{refine} and \emph{repeat}' framework, allowing for long-range generation that cover large distances after hundreds of frames. Our approach can be trained from a set of monocular video sequences. We propose a dataset of aerial footage of coastal scenes, and compare our method with recent view synthesis and conditional video generation baselines, showing that it can generate plausible scenes for much longer time horizons over large camera trajectories compared to existing methods. Project page at https://infinite-nature.github.io/.

View on arXiv
Comments on this paper