ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.09324
23
7

Series Saliency: Temporal Interpretation for Multivariate Time Series Forecasting

16 December 2020
Qingyi Pan
Wenbo Hu
Jun Zhu
    FAtt
    AI4TS
ArXivPDFHTML
Abstract

Time series forecasting is an important yet challenging task. Though deep learning methods have recently been developed to give superior forecasting results, it is crucial to improve the interpretability of time series models. Previous interpretation methods, including the methods for general neural networks and attention-based methods, mainly consider the interpretation in the feature dimension while ignoring the crucial temporal dimension. In this paper, we present the series saliency framework for temporal interpretation for multivariate time series forecasting, which considers the forecasting interpretation in both feature and temporal dimensions. By extracting the "series images" from the sliding windows of the time series, we apply the saliency map segmentation following the smallest destroying region principle. The series saliency framework can be employed to any well-defined deep learning models and works as a data augmentation to get more accurate forecasts. Experimental results on several real datasets demonstrate that our framework generates temporal interpretations for the time series forecasting task while produces accurate time series forecast.

View on arXiv
Comments on this paper