ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.07195
17
1

Efficient Querying for Cooperative Probabilistic Commitments

14 December 2020
Qi Zhang
E. Durfee
Satinder Singh
ArXiv (abs)PDFHTML
Abstract

Multiagent systems can use commitments as the core of a general coordination infrastructure, supporting both cooperative and non-cooperative interactions. Agents whose objectives are aligned, and where one agent can help another achieve greater reward by sacrificing some of its own reward, should choose a cooperative commitment to maximize their joint reward. We present a solution to the problem of how cooperative agents can efficiently find an (approximately) optimal commitment by querying about carefully-selected commitment choices. We prove structural properties of the agents' values as functions of the parameters of the commitment specification, and develop a greedy method for composing a query with provable approximation bounds, which we empirically show can find nearly optimal commitments in a fraction of the time methods that lack our insights require.

View on arXiv
Comments on this paper