ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.05661
23
5

Effect of the regularization hyperparameter on deep learning-based segmentation in LGE-MRI

10 December 2020
O. Rukundo
ArXivPDFHTML
Abstract

The extent to which the arbitrarily selected L2 regularization hyperparameter value affects the outcome of semantic segmentation with deep learning is demonstrated. Demonstrations rely on training U-net on small LGE-MRI datasets using the arbitrarily selected L2 regularization values. The remaining hyperparameters are to be manually adjusted or tuned only when 10 % of all epochs are reached before the training validation accuracy reaches 90%. Semantic segmentation with deep learning outcomes are objectively and subjectively evaluated against the manual ground truth segmentation.

View on arXiv
Comments on this paper