28
1

Intrinsically Motivated Compositional Language Emergence

Abstract

Recently, there has been a great deal of research in emergent communication on artificial agents interacting in simulated environments. Recent studies have revealed that, in general, emergent languages do not follow the compositionality patterns of natural language. To deal with this, existing works have proposed a limited channel capacity as an important constraint for learning highly compositional languages. In this paper, we show that this is not a sufficient condition and propose an intrinsic reward framework for improving compositionality in emergent communication. We use a reinforcement learning setting with two agents -- a \textit{task-aware} Speaker and a \textit{state-aware} Listener that are required to communicate to perform a set of tasks. Through our experiments on three different referential game setups, including a novel environment gComm, we show intrinsic rewards improve compositionality scores by 1.52\approx \mathbf{1.5-2} times that of existing frameworks that use limited channel capacity.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.