ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.04699
20
12

Class Clown: Data Redaction in Machine Unlearning at Enterprise Scale

8 December 2020
Daniel L. Felps
Amelia D. Schwickerath
Joyce D. Williams
Trung N. Vuong
Alan Briggs
M. Hunt
Evan Sakmar
David D. Saranchak
Tyler Shumaker
    AILaw
ArXivPDFHTML
Abstract

Individuals are gaining more control of their personal data through recent data privacy laws such the General Data Protection Regulation and the California Consumer Privacy Act. One aspect of these laws is the ability to request a business to delete private information, the so called "right to be forgotten" or "right to erasure". These laws have serious financial implications for companies and organizations that train large, highly accurate deep neural networks (DNNs) using these valuable consumer data sets. However, a received redaction request poses complex technical challenges on how to comply with the law while fulfilling core business operations. We introduce a DNN model lifecycle maintenance process that establishes how to handle specific data redaction requests and minimize the need to completely retrain the model. Our process is based upon the membership inference attack as a compliance tool for every point in the training set. These attack models quantify the privacy risk of all training data points and form the basis of follow-on data redaction from an accurate deployed model; excision is implemented through incorrect label assignment within incremental model updates.

View on arXiv
Comments on this paper