ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.04337
12
40

Robust Learning by Self-Transition for Handling Noisy Labels

8 December 2020
Hwanjun Song
Minseok Kim
Dongmin Park
Yooju Shin
Jae-Gil Lee
    NoLa
ArXivPDFHTML
Abstract

Real-world data inevitably contains noisy labels, which induce the poor generalization of deep neural networks. It is known that the network typically begins to rapidly memorize false-labeled samples after a certain point of training. Thus, to counter the label noise challenge, we propose a novel self-transitional learning method called MORPH, which automatically switches its learning phase at the transition point from seeding to evolution. In the seeding phase, the network is updated using all the samples to collect a seed of clean samples. Then, in the evolution phase, the network is updated using only the set of arguably clean samples, which precisely keeps expanding by the updated network. Thus, MORPH effectively avoids the overfitting to false-labeled samples throughout the entire training period. Extensive experiments using five real-world or synthetic benchmark datasets demonstrate substantial improvements over state-of-the-art methods in terms of robustness and efficiency.

View on arXiv
Comments on this paper