ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.03500
14
38

EfficientTTS: An Efficient and High-Quality Text-to-Speech Architecture

7 December 2020
Chenfeng Miao
Shuang Liang
Zhencheng Liu
Minchuan Chen
Jun Ma
Shaojun Wang
Jing Xiao
ArXivPDFHTML
Abstract

In this work, we address the Text-to-Speech (TTS) task by proposing a non-autoregressive architecture called EfficientTTS. Unlike the dominant non-autoregressive TTS models, which are trained with the need of external aligners, EfficientTTS optimizes all its parameters with a stable, end-to-end training procedure, while allowing for synthesizing high quality speech in a fast and efficient manner. EfficientTTS is motivated by a new monotonic alignment modeling approach (also introduced in this work), which specifies monotonic constraints to the sequence alignment with almost no increase of computation. By combining EfficientTTS with different feed-forward network structures, we develop a family of TTS models, including both text-to-melspectrogram and text-to-waveform networks. We experimentally show that the proposed models significantly outperform counterpart models such as Tacotron 2 and Glow-TTS in terms of speech quality, training efficiency and synthesis speed, while still producing the speeches of strong robustness and great diversity. In addition, we demonstrate that proposed approach can be easily extended to autoregressive models such as Tacotron 2.

View on arXiv
Comments on this paper