ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.03212
15
0

Skeleon-Based Typing Style Learning For Person Identification

6 December 2020
Lior Gelberg
D. Mendlovic
D. Raviv
    3DH
ArXivPDFHTML
Abstract

We present a novel architecture for person identification based on typing-style, constructed of adaptive non-local spatio-temporal graph convolutional network. Since type style dynamics convey meaningful information that can be useful for person identification, we extract the joints positions and then learn their movements' dynamics. Our non-local approach increases our model's robustness to noisy input data while analyzing joints locations instead of RGB data provides remarkable robustness to alternating environmental conditions, e.g., lighting, noise, etc. We further present two new datasets for typing style based person identification task and extensive evaluation that displays our model's superior discriminative and generalization abilities, when compared with state-of-the-art skeleton-based models.

View on arXiv
Comments on this paper