ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.02342
18
4

Divide and Learn: A Divide and Conquer Approach for Predict+Optimize

4 December 2020
Ali Ugur Guler
Emir Demirović
Jeffrey Chan
James Bailey
C. Leckie
Peter Stuckey
ArXivPDFHTML
Abstract

The predict+optimize problem combines machine learning ofproblem coefficients with a combinatorial optimization prob-lem that uses the predicted coefficients. While this problemcan be solved in two separate stages, it is better to directlyminimize the optimization loss. However, this requires dif-ferentiating through a discrete, non-differentiable combina-torial function. Most existing approaches use some form ofsurrogate gradient. Demirovicet alshowed how to directlyexpress the loss of the optimization problem in terms of thepredicted coefficients as a piece-wise linear function. How-ever, their approach is restricted to optimization problemswith a dynamic programming formulation. In this work wepropose a novel divide and conquer algorithm to tackle op-timization problems without this restriction and predict itscoefficients using the optimization loss. We also introduce agreedy version of this approach, which achieves similar re-sults with less computation. We compare our approach withother approaches to the predict+optimize problem and showwe can successfully tackle some hard combinatorial problemsbetter than other predict+optimize methods.

View on arXiv
Comments on this paper