ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.01166
16
18

Improving Interpretability in Medical Imaging Diagnosis using Adversarial Training

2 December 2020
Andrei Margeloiu
Nikola Simidjievski
M. Jamnik
Adrian Weller
    GAN
    AAML
    MedIm
    FAtt
ArXivPDFHTML
Abstract

We investigate the influence of adversarial training on the interpretability of convolutional neural networks (CNNs), specifically applied to diagnosing skin cancer. We show that gradient-based saliency maps of adversarially trained CNNs are significantly sharper and more visually coherent than those of standardly trained CNNs. Furthermore, we show that adversarially trained networks highlight regions with significant color variation within the lesion, a common characteristic of melanoma. We find that fine-tuning a robust network with a small learning rate further improves saliency maps' sharpness. Lastly, we provide preliminary work suggesting that robustifying the first layers to extract robust low-level features leads to visually coherent explanations.

View on arXiv
Comments on this paper