ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.00218
32
10

Uncertainty-Constrained Differential Dynamic Programming in Belief Space for Vision Based Robots

1 December 2020
S. Rahman
Steven L. Waslander
ArXivPDFHTML
Abstract

Most mobile robots follow a modular sense-planact system architecture that can lead to poor performance or even catastrophic failure for visual inertial navigation systems due to trajectories devoid of feature matches. Planning in belief space provides a unified approach to tightly couple the perception, planning and control modules, leading to trajectories that are robust to noisy measurements and disturbances. However, existing methods handle uncertainties as costs that require manual tuning for varying environments and hardware. We therefore propose a novel trajectory optimization formulation that incorporates inequality constraints on uncertainty and a novel Augmented Lagrangian based stochastic differential dynamic programming method in belief space. Furthermore, we develop a probabilistic visibility model that accounts for discontinuities due to feature visibility limits. Our simulation tests demonstrate that our method can handle inequality constraints in different environments, for holonomic and nonholonomic motion models with no manual tuning of uncertainty costs involved. We also show the improved optimization performance in belief space due to our visibility model.

View on arXiv
Comments on this paper