ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.00179
11
0

Crowd-Sourced Road Quality Mapping in the Developing World

1 December 2020
Benjamin Choi
John Kamalu
ArXivPDFHTML
Abstract

Road networks are among the most essential components of a country's infrastructure. By facilitating the movement and exchange of goods, people, and ideas, they support economic and cultural activity both within and across borders. Up-to-date mapping of the the geographical distribution of roads and their quality is essential in high-impact applications ranging from land use planning to wilderness conservation. Mapping presents a particularly pressing challenge in developing countries, where documentation is poor and disproportionate amounts of road construction are expected to occur in the coming decades. We present a new crowd-sourced approach capable of assessing road quality and identify key challenges and opportunities in the transferability of deep learning based methods across domains.

View on arXiv
Comments on this paper