ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.14890
22
10

Low-Bandwidth Communication Emerges Naturally in Multi-Agent Learning Systems

30 November 2020
Niko A. Grupen
Daniel D. Lee
B. Selman
ArXivPDFHTML
Abstract

In this work, we study emergent communication through the lens of cooperative multi-agent behavior in nature. Using insights from animal communication, we propose a spectrum from low-bandwidth (e.g. pheromone trails) to high-bandwidth (e.g. compositional language) communication that is based on the cognitive, perceptual, and behavioral capabilities of social agents. Through a series of experiments with pursuit-evasion games, we identify multi-agent reinforcement learning algorithms as a computational model for the low-bandwidth end of the communication spectrum.

View on arXiv
Comments on this paper