Multi-Agent Maximization of a Monotone Submodular Function via Maximum Consensus

Constrained submodular set function maximization problems often appear in multi-agent decision-making problems with a discrete feasible set. A prominent example is the problem of multi-agent mobile sensor placement over a discrete domain. However, submodular set function optimization problems are known to be NP-hard. In this paper, we consider a class of submodular optimization problems that consists of maximization of a monotone and submodular set function subject to a uniform matroid constraint over a group of networked agents that communicate over a connected undirected graph. Our objective is to obtain a distributed suboptimal polynomial-time algorithm that enables each agent to obtain its respective policy via local interactions with its neighboring agents. Our solution is a fully distributed gradient-based algorithm using the multilinear extension of the submodular set functions and exploiting a maximum consensus scheme. This algorithm results in a policy set that when the team objective function is evaluated at worst case the objective function value is in of the optimal solution. An example demonstrates our results.
View on arXiv