ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.14006
52
21
v1v2 (latest)

Offset-free setpoint tracking using neural network controllers

23 November 2020
Patricia Pauli
Johannes Köhler
J. Berberich
Anne Koch
Frank Allgöwer
ArXiv (abs)PDFHTML
Abstract

In this paper, we present a method to analyze local and global stability in offset-free setpoint tracking using neural network controllers and we provide ellipsoidal inner approximations of the corresponding region of attraction. We consider a feedback interconnection of a linear plant in connection with a neural network controller and an integrator, which allows for offset-free tracking of a desired piecewise constant reference that enters the controller as an external input. Exploiting the fact that activation functions used in neural networks are slope-restricted, we derive linear matrix inequalities to verify stability using Lyapunov theory. After stating a global stability result, we present less conservative local stability conditions (i) for a given reference and (ii) for any reference from a certain set. The latter result even enables guaranteed tracking under setpoint changes using a reference governor which can lead to a significant increase of the region of attraction. Finally, we demonstrate the applicability of our analysis by verifying stability and offset-free tracking of a neural network controller that was trained to stabilize a linearized inverted pendulum.

View on arXiv
Comments on this paper