19
2

MTCRNN: A multi-scale RNN for directed audio texture synthesis

Abstract

Audio textures are a subset of environmental sounds, often defined as having stable statistical characteristics within an adequately large window of time but may be unstructured locally. They include common everyday sounds such as from rain, wind, and engines. Given that these complex sounds contain patterns on multiple timescales, they are a challenge to model with traditional methods. We introduce a novel modelling approach for textures, combining recurrent neural networks trained at different levels of abstraction with a conditioning strategy that allows for user-directed synthesis. We demonstrate the model's performance on a variety of datasets, examine its performance on various metrics, and discuss some potential applications.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.