ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.12233
11
4

Linear Convergence of Distributed Mirror Descent with Integral Feedback for Strongly Convex Problems

24 November 2020
Youbang Sun
Shahin Shahrampour
ArXivPDFHTML
Abstract

Distributed optimization often requires finding the minimum of a global objective function written as a sum of local functions. A group of agents work collectively to minimize the global function. We study a continuous-time decentralized mirror descent algorithm that uses purely local gradient information to converge to the global optimal solution. The algorithm enforces consensus among agents using the idea of integral feedback. Recently, Sun and Shahrampour (2020) studied the asymptotic convergence of this algorithm for when the global function is strongly convex but local functions are convex. Using control theory tools, in this work, we prove that the algorithm indeed achieves (local) exponential convergence. We also provide a numerical experiment on a real data-set as a validation of the convergence speed of our algorithm.

View on arXiv
Comments on this paper