ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.12220
42
0

Some Theory for Texture Segmentation

31 October 2020
Lin Zheng
ArXiv (abs)PDFHTML
Abstract

In the context of texture segmentation in images, and provide some theoretical guarantees for the prototypical approach which consists in extracting local features in the neighborhood of a pixel and then applying a clustering algorithm for grouping the pixel according to these features. On the one hand, for stationary textures, which we model with Gaussian Markov random fields, we construct the feature for each pixel by calculating the sample covariance matrix of its neighborhood patch and cluster the pixels by an application of k-means to group the covariance matrices. We show that this generic method is consistent. On the other hand, for non-stationary fields, we include the location of the pixel as an additional feature and apply single-linkage clustering. We again show that this generic and emblematic method is consistent. We complement our theory with some numerical experiments performed on both generated and natural textures.

View on arXiv
Comments on this paper