4
1

Angular Embedding: A New Angular Robust Principal Component Analysis

Abstract

As a widely used method in machine learning, principal component analysis (PCA) shows excellent properties for dimensionality reduction. It is a serious problem that PCA is sensitive to outliers, which has been improved by numerous Robust PCA (RPCA) versions. However, the existing state-of-the-art RPCA approaches cannot easily remove or tolerate outliers by a non-iterative manner. To tackle this issue, this paper proposes Angular Embedding (AE) to formulate a straightforward RPCA approach based on angular density, which is improved for large scale or high-dimensional data. Furthermore, a trimmed AE (TAE) is introduced to deal with data with large scale outliers. Extensive experiments on both synthetic and real-world datasets with vector-level or pixel-level outliers demonstrate that the proposed AE/TAE outperforms the state-of-the-art RPCA based methods.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.