ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.10615
10
0

Adversarial Training for EM Classification Networks

20 November 2020
Tom Grimes
E. Church
W. Pitts
Lynn Wood
Eva Brayfindley
Luke Erikson
M. Greaves
    OODAAML
ArXiv (abs)PDFHTML
Abstract

We present a novel variant of Domain Adversarial Networks with impactful improvements to the loss functions, training paradigm, and hyperparameter optimization. New loss functions are defined for both forks of the DANN network, the label predictor and domain classifier, in order to facilitate more rapid gradient descent, provide more seamless integration into modern neural networking frameworks, and allow previously unavailable inferences into network behavior. Using these loss functions, it is possible to extend the concept of 'domain' to include arbitrary user defined labels applicable to subsets of the training data, the test data, or both. As such, the network can be operated in either Ón the Fly' mode where features provided by the feature extractor indicative of differences between 'domain' labels in the training data are removed or in 'Test Collection Informed' mode where features indicative of difference between 'domain' labels in the combined training and test data are removed (without needing to know or provide test activity labels to the network). This work also draws heavily from previous works on Robust Training which draws training examples from a L_inf ball around the training data in order to remove fragile features induced by random fluctuations in the data. On these networks we explore the process of hyperparameter optimization for both the domain adversarial and robust hyperparameters. Finally, this network is applied to the construction of a binary classifier used to identify the presence of EM signal emitted by a turbopump. For this example, the effect of the robust and domain adversarial training is to remove features indicative of the difference in background between instances of operation of the device - providing highly discriminative features on which to construct the classifier.

View on arXiv
Comments on this paper