ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.09438
23
11

EWareNet: Emotion Aware Human Intent Prediction and Adaptive Spatial Profile Fusion for Social Robot Navigation

18 November 2020
V. Narayanan
Bala Murali Manoghar
Rama Prashanth RV
Aniket Bera
ArXivPDFHTML
Abstract

We present EWareNet, a novel intent and affect-aware social robot navigation algorithm among pedestrians. Our approach predicts the trajectory-based pedestrian intent from gait sequence, which is then used for intent-guided navigation taking into account social and proxemic constraints. We propose a transformer-based model that works on commodity RGB-D cameras mounted onto a moving robot. Our intent prediction routine is integrated into a mapless navigation scheme and makes no assumptions about the environment of pedestrian motion. Our navigation scheme consists of a novel obstacle profile representation methodology that is dynamically adjusted based on the pedestrian pose, intent, and affect. The navigation scheme is based on a reinforcement learning algorithm that takes pedestrian intent and robot's impact on pedestrian intent into consideration, in addition to the environmental configuration. We outperform current state-of-art algorithms for intent prediction from 3D gaits.

View on arXiv
Comments on this paper