ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.08822
27
1

Learning Canonical Transformations

17 November 2020
Zachary Dulberg
J. Cohen
ArXivPDFHTML
Abstract

Humans understand a set of canonical geometric transformations (such as translation and rotation) that support generalization by being untethered to any specific object. We explore inductive biases that help a neural network model learn these transformations in pixel space in a way that can generalize out-of-domain. Specifically, we find that high training set diversity is sufficient for the extrapolation of translation to unseen shapes and scales, and that an iterative training scheme achieves significant extrapolation of rotation in time.

View on arXiv
Comments on this paper