This paper studies experimental designs for estimation and inference on policies with spillover effects. Units are organized into a finite number of large clusters and interact in unknown ways within each cluster. First, we introduce a single-wave experiment that, by varying the randomization across cluster pairs, estimates the marginal effect of a change in treatment probabilities, taking spillover effects into account. Using the marginal effect, we propose a test for policy optimality. Second, we design a multiple-wave experiment to estimate welfare-maximizing treatment rules. We provide strong theoretical guarantees and an implementation in a large-scale field experiment.
View on arXiv