ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.07954
10
1

Using a Supervised Method without supervision for foreground segmentation

26 October 2020
Levi Kassel
M. Werman
ArXivPDFHTML
Abstract

Neural networks are a powerful framework for foreground segmentation in video acquired by static cameras, segmenting moving objects from the background in a robust way in various challenging scenarios. The premier methods are those based on supervision requiring a final training stage on a database of tens to hundreds of manually segmented images from the specific static camera. In this work, we propose a method to automatically create an "artificial" database that is sufficient for training the supervised methods so that it performs better than current unsupervised methods. It is based on combining a weak foreground segmenter, compared to the supervised method, to extract suitable objects from the training images and randomly inserting these objects back into a background image. Test results are shown on the test sequences in CDnet.

View on arXiv
Comments on this paper