ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.07456
15
27

State-Dependent Temperature Control for Langevin Diffusions

15 November 2020
Xuefeng Gao
Z. Xu
X. Zhou
ArXivPDFHTML
Abstract

We study the temperature control problem for Langevin diffusions in the context of non-convex optimization. The classical optimal control of such a problem is of the bang-bang type, which is overly sensitive to errors. A remedy is to allow the diffusions to explore other temperature values and hence smooth out the bang-bang control. We accomplish this by a stochastic relaxed control formulation incorporating randomization of the temperature control and regularizing its entropy. We derive a state-dependent, truncated exponential distribution, which can be used to sample temperatures in a Langevin algorithm, in terms of the solution to an HJB partial differential equation. We carry out a numerical experiment on a one-dimensional baseline example, in which the HJB equation can be easily solved, to compare the performance of the algorithm with three other available algorithms in search of a global optimum.

View on arXiv
Comments on this paper