ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.06392
6
9

Using IPA-Based Tacotron for Data Efficient Cross-Lingual Speaker Adaptation and Pronunciation Enhancement

12 November 2020
Hamed Hemati
Damian Borth
ArXivPDFHTML
Abstract

Recent neural Text-to-Speech (TTS) models have been shown to perform very well when enough data is available. However, fine-tuning them for new speakers or languages is not straightforward in a low-resource setup. In this paper, we show that by applying minor modifications to a Tacotron model, one can transfer an existing TTS model for new speakers from the same or a different language using only 20 minutes of data. For this purpose, we first introduce a base multi-lingual Tacotron with language-agnostic input, then demonstrate how transfer learning is done for different scenarios of speaker adaptation without exploiting any pre-trained speaker encoder or code-switching technique. We evaluate the transferred model in both subjective and objective ways.

View on arXiv
Comments on this paper