ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.05499
18
188

Unsupervised Learning of Dense Visual Representations

11 November 2020
Pedro H. O. Pinheiro
Amjad Almahairi
Ryan Y. Benmalek
Florian Golemo
Aaron Courville
    SSL
    MDE
ArXivPDFHTML
Abstract

Contrastive self-supervised learning has emerged as a promising approach to unsupervised visual representation learning. In general, these methods learn global (image-level) representations that are invariant to different views (i.e., compositions of data augmentation) of the same image. However, many visual understanding tasks require dense (pixel-level) representations. In this paper, we propose View-Agnostic Dense Representation (VADeR) for unsupervised learning of dense representations. VADeR learns pixelwise representations by forcing local features to remain constant over different viewing conditions. Specifically, this is achieved through pixel-level contrastive learning: matching features (that is, features that describes the same location of the scene on different views) should be close in an embedding space, while non-matching features should be apart. VADeR provides a natural representation for dense prediction tasks and transfers well to downstream tasks. Our method outperforms ImageNet supervised pretraining (and strong unsupervised baselines) in multiple dense prediction tasks.

View on arXiv
Comments on this paper