13
2

A deep-learning classifier for cardiac arrhythmias

Abstract

We report on a method that classifies heart beats according to a set of 13 classes, including cardiac arrhythmias. The method localises the QRS peak complex to define each heart beat and uses a neural network to infer the patterns characteristic of each heart beat class. The best performing neural network contains six one-dimensional convolutional layers and four dense layers, with the kernel sizes being multiples of the characteristic scale of the problem, thus resulting a computationally fast and physically motivated neural network. For the same number of heart beat classes, our method yields better results with a considerably smaller neural network than previously published methods, which renders our method competitive for deployment in an internet-of-things solution.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.