ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.03190
6
4

ReFloat: Low-Cost Floating-Point Processing in ReRAM for Accelerating Iterative Linear Solvers

6 November 2020
Linghao Song
Fan Chen
Xuehai Qian
Hai Li
Yiran Chen
ArXivPDFHTML
Abstract

Resistive random access memory (ReRAM) is a promising technology that can perform low-cost and in-situ matrix-vector multiplication (MVM) in analog domain. Scientific computing requires high-precision floating-point (FP) processing. However, performing floating-point computation in ReRAM is challenging because of high hardware cost and execution time due to the large FP value range. In this work we present ReFloat, a data format and an accelerator architecture, for low-cost and high-performance floating-point processing in ReRAM for iterative linear solvers. ReFloat matches the ReRAM crossbar hardware and represents a block of FP values with reduced bits and an optimized exponent base for a high range of dynamic representation. Thus, ReFloat achieves less ReRAM crossbar consumption and fewer processing cycles and overcomes the noncovergence issue in a prior work. The evaluation on the SuiteSparse matrices shows ReFloat achieves 5.02x to 84.28x improvement in terms of solver time compared to a state-of-the-art ReRAM based accelerator.

View on arXiv
Comments on this paper