ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.03168
24
0
v1v2v3v4 (latest)

Neural Stochastic Contraction Metrics for Learning-based Control and Estimation

6 November 2020
Hiroyasu Tsukamoto
Soon-Jo Chung
Jean-Jacques E. Slotine
ArXiv (abs)PDFHTML
Abstract

We present Neural Stochastic Contraction Metrics (NSCM), a new design framework for provably-stable robust control and estimation for a class of stochastic nonlinear systems. It uses a spectrally-normalized deep neural network to construct a contraction metric, sampled via simplified convex optimization in the stochastic setting. Spectral normalization constrains the state-derivatives of the metric to be Lipschitz continuous, thereby ensuring exponential boundedness of the mean squared distance of system trajectories under stochastic disturbances. The NSCM framework allows autonomous agents to approximate optimal stable control and estimation policies in real-time, and outperforms existing nonlinear control and estimation techniques including the state-dependent Riccati equation, iterative LQR, EKF, and the deterministic neural contraction metric, as illustrated in simulation results.

View on arXiv
Comments on this paper