6
6

Binary classification with ambiguous training data

Abstract

In supervised learning, we often face with ambiguous (A) samples that are difficult to label even by domain experts. In this paper, we consider a binary classification problem in the presence of such A samples. This problem is substantially different from semi-supervised learning since unlabeled samples are not necessarily difficult samples. Also, it is different from 3-class classification with the positive (P), negative (N), and A classes since we do not want to classify test samples into the A class. Our proposed method extends binary classification with reject option, which trains a classifier and a rejector simultaneously using P and N samples based on the 0-1-cc loss with rejection cost cc. More specifically, we propose to train a classifier and a rejector under the 0-1-cc-dd loss using P, N, and A samples, where dd is the misclassification penalty for ambiguous samples. In our practical implementation, we use a convex upper bound of the 0-1-cc-dd loss for computational tractability. Numerical experiments demonstrate that our method can successfully utilize the additional information brought by such A training data.

View on arXiv
Comments on this paper