12
67

The Complexity of Gradient Descent: CLS = PPAD \cap PLS

Abstract

We study search problems that can be solved by performing Gradient Descent on a bounded convex polytopal domain and show that this class is equal to the intersection of two well-known classes: PPAD and PLS. As our main underlying technical contribution, we show that computing a Karush-Kuhn-Tucker (KKT) point of a continuously differentiable function over the domain [0,1]2[0,1]^2 is PPAD \cap PLS-complete. This is the first non-artificial problem to be shown complete for this class. Our results also imply that the class CLS (Continuous Local Search) - which was defined by Daskalakis and Papadimitriou as a more "natural" counterpart to PPAD \cap PLS and contains many interesting problems - is itself equal to PPAD \cap PLS.

View on arXiv
Comments on this paper