ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.01578
17
10

Risk-Averse Planning via CVaR Barrier Functions: Application to Bipedal Robot Locomotion

3 November 2020
M. Ahmadi
Xiaobin Xiong
Aaron D. Ames
ArXivPDFHTML
Abstract

Enforcing safety in the presence of stochastic uncertainty is a challenging problem. Traditionally, researchers have proposed safety in the statistical mean as a safety measure in this case. However, ensuring safety in the statistical mean is only reasonable if system's safe behavior in the large number of runs is of interest, which precludes the use of mean safety in practical scenarios. In this paper, we propose a risk sensitive notion of safety called conditional-value-at-risk (CVaR) safety, which is concerned with safe performance in the worst case realizations. We introduce CVaR barrier functions as a tool to enforce CVaR-safety and propose conditions for their Boolean compositions. Given a legacy controller, we show that we can design a minimally interfering CVaR-safe controller via solving difference convex programs. We elucidate the proposed method by applying it to a bipedal robot locomotion case study.

View on arXiv
Comments on this paper