ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.01477
16
35

Kernel Two-Dimensional Ridge Regression for Subspace Clustering

3 November 2020
Chong Peng
Qian Zhang
Zhao Kang
Chenglizhao Chen
Q. Cheng
ArXivPDFHTML
Abstract

Subspace clustering methods have been widely studied recently. When the inputs are 2-dimensional (2D) data, existing subspace clustering methods usually convert them into vectors, which severely damages inherent structures and relationships from original data. In this paper, we propose a novel subspace clustering method for 2D data. It directly uses 2D data as inputs such that the learning of representations benefits from inherent structures and relationships of the data. It simultaneously seeks image projection and representation coefficients such that they mutually enhance each other and lead to powerful data representations. An efficient algorithm is developed to solve the proposed objective function with provable decreasing and convergence property. Extensive experimental results verify the effectiveness of the new method.

View on arXiv
Comments on this paper