ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.00860
42
4

Learning from Non-Binary Constituency Trees via Tensor Decomposition

2 November 2020
Daniele Castellana
D. Bacciu
ArXiv (abs)PDFHTML
Abstract

Processing sentence constituency trees in binarised form is a common and popular approach in literature. However, constituency trees are non-binary by nature. The binarisation procedure changes deeply the structure, furthering constituents that instead are close. In this work, we introduce a new approach to deal with non-binary constituency trees which leverages tensor-based models. In particular, we show how a powerful composition function based on the canonical tensor decomposition can exploit such a rich structure. A key point of our approach is the weight sharing constraint imposed on the factor matrices, which allows limiting the number of model parameters. Finally, we introduce a Tree-LSTM model which takes advantage of this composition function and we experimentally assess its performance on different NLP tasks.

View on arXiv
Comments on this paper