ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.15676
16
5

Optimization Fabrics for Behavioral Design

28 October 2020
Nathan D. Ratliff
Karl Van Wyk
Mandy Xie
Anqi Li
M. A. Rana
    AI4CE
ArXivPDFHTML
Abstract

A common approach to the provably stable design of reactive behavior, exemplified by operational space control, is to reduce the problem to the design of virtual classical mechanical systems (energy shaping). This framework is widely used, and through it we gain stability, but at the price of expressivity. This work presents a comprehensive theoretical framework expanding this approach showing that there is a much larger class of differential equations generalizing classical mechanical systems (and the broader class of Lagrangian systems) and greatly expanding their expressivity while maintaining the same governing stability principles. At the core of our framework is a class of differential equations we call fabrics which constitute a behavioral medium across which we can optimize a potential function. These fabrics shape the system's behavior during optimization but still always provably converge to a local minimum, making them a building block of stable behavioral design. We build the theoretical foundations of our framework here and provide a simple empirical demonstration of a practical class of geometric fabrics, which additionally exhibit a natural geometric path consistency making them convenient for flexible and intuitive behavioral design.

View on arXiv
Comments on this paper