ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.15261
  4. Cited By
Deep Shells: Unsupervised Shape Correspondence with Optimal Transport

Deep Shells: Unsupervised Shape Correspondence with Optimal Transport

28 October 2020
Marvin Eisenberger
Aysim Toker
Laura Leal-Taixé
Daniel Cremers
    OT
    3DPC
ArXivPDFHTML

Papers citing "Deep Shells: Unsupervised Shape Correspondence with Optimal Transport"

26 / 26 papers shown
Title
Non-Rigid Puzzles
Non-Rigid Puzzles
Or Litany
Emanuele Rodolà
Alexander M. Bronstein
Michael M. Bronstein
Daniel Cremers
3DV
33
76
0
26 Nov 2020
CNNs on Surfaces using Rotation-Equivariant Features
CNNs on Surfaces using Rotation-Equivariant Features
R. Wiersma
E. Eisemann
Klaus Hildebrandt
109
69
0
02 Jun 2020
Deep Geometric Functional Maps: Robust Feature Learning for Shape
  Correspondence
Deep Geometric Functional Maps: Robust Feature Learning for Shape Correspondence
Nicolas Donati
Abhishek Sharma
M. Ovsjanikov
AAML
3DPC
89
155
0
31 Mar 2020
RPM-Net: Robust Point Matching using Learned Features
RPM-Net: Robust Point Matching using Learned Features
Zi Jian Yew
Gim Hee Lee
3DPC
53
440
0
30 Mar 2020
SuperGlue: Learning Feature Matching with Graph Neural Networks
SuperGlue: Learning Feature Matching with Graph Neural Networks
Paul-Edouard Sarlin
Daniel DeTone
Tomasz Malisiewicz
Andrew Rabinovich
3DPC
OffRL
99
1,929
0
26 Nov 2019
Smooth Shells: Multi-Scale Shape Registration with Functional Maps
Smooth Shells: Multi-Scale Shape Registration with Functional Maps
Marvin Eisenberger
Zorah Lähner
Daniel Cremers
59
94
0
29 May 2019
ZoomOut: Spectral Upsampling for Efficient Shape Correspondence
ZoomOut: Spectral Upsampling for Efficient Shape Correspondence
Simone Melzi
Jing Ren
Emanuele Rodolà
Abhishek Sharma
Peter Wonka
M. Ovsjanikov
41
83
0
16 Apr 2019
A Comprehensive Survey on Graph Neural Networks
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu
Shirui Pan
Fengwen Chen
Guodong Long
Chengqi Zhang
Philip S. Yu
FaML
GNN
AI4TS
AI4CE
624
8,496
0
03 Jan 2019
Unsupervised Deep Learning for Structured Shape Matching
Unsupervised Deep Learning for Structured Shape Matching
Jean-Michel Roufosse
Abhishek Sharma
M. Ovsjanikov
3DPC
47
139
0
10 Dec 2018
Multi-directional Geodesic Neural Networks via Equivariant Convolution
Multi-directional Geodesic Neural Networks via Equivariant Convolution
A. Poulenard
M. Ovsjanikov
3DH
45
91
0
01 Oct 2018
3D-CODED : 3D Correspondences by Deep Deformation
3D-CODED : 3D Correspondences by Deep Deformation
Thibault Groueix
Matthew Fisher
Vladimir G. Kim
Bryan C. Russell
Mathieu Aubry
3DPC
3DV
149
328
0
13 Jun 2018
Continuous and Orientation-preserving Correspondences via Functional
  Maps
Continuous and Orientation-preserving Correspondences via Functional Maps
Jing Ren
A. Poulenard
Peter Wonka
M. Ovsjanikov
40
166
0
12 Jun 2018
Learning Latent Permutations with Gumbel-Sinkhorn Networks
Learning Latent Permutations with Gumbel-Sinkhorn Networks
Gonzalo E. Mena
David Belanger
Scott W. Linderman
Jasper Snoek
72
270
0
23 Feb 2018
Deep Functional Maps: Structured Prediction for Dense Shape
  Correspondence
Deep Functional Maps: Structured Prediction for Dense Shape Correspondence
Or Litany
Tal Remez
Emanuele Rodolà
A. Bronstein
M. Bronstein
3DPC
135
284
0
27 Apr 2017
Learning from Synthetic Humans
Learning from Synthetic Humans
Gül Varol
Javier Romero
Xavier Martin
Naureen Mahmood
Michael J. Black
Ivan Laptev
Cordelia Schmid
3DH
93
972
0
05 Jan 2017
Product Manifold Filter: Non-Rigid Shape Correspondence via Kernel
  Density Estimation in the Product Space
Product Manifold Filter: Non-Rigid Shape Correspondence via Kernel Density Estimation in the Product Space
Matthias Vestner
R. Litman
Emanuele Rodolà
A. Bronstein
Daniel Cremers
68
130
0
03 Jan 2017
PointNet: Deep Learning on Point Sets for 3D Classification and
  Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas Guibas
3DH
3DPC
3DV
PINN
450
14,264
0
02 Dec 2016
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
396
1,819
0
25 Nov 2016
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
716
3,274
0
24 Nov 2016
Semi-Supervised Classification with Graph Convolutional Networks
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNN
SSL
581
28,999
0
09 Sep 2016
Convolutional Neural Networks on Graphs with Fast Localized Spectral
  Filtering
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
M. Defferrard
Xavier Bresson
P. Vandergheynst
GNN
317
7,646
0
30 Jun 2016
Learning shape correspondence with anisotropic convolutional neural
  networks
Learning shape correspondence with anisotropic convolutional neural networks
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
M. Bronstein
3DPC
154
508
0
20 May 2016
Deep Convolutional Networks on Graph-Structured Data
Deep Convolutional Networks on Graph-Structured Data
Mikael Henaff
Joan Bruna
Yann LeCun
GNN
150
1,586
0
16 Jun 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.5K
149,842
0
22 Dec 2014
Spectral Networks and Locally Connected Networks on Graphs
Spectral Networks and Locally Connected Networks on Graphs
Joan Bruna
Wojciech Zaremba
Arthur Szlam
Yann LeCun
GNN
193
4,870
0
21 Dec 2013
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation
  Distances
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances
Marco Cuturi
OT
188
4,251
0
04 Jun 2013
1