ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.13850
21
1

Multi-Class Zero-Shot Learning for Artistic Material Recognition

26 October 2020
Alexander W. Olson
Andreea Cucu
Tom Bock
ArXivPDFHTML
Abstract

Zero-Shot Learning (ZSL) is an extreme form of transfer learning, where no labelled examples of the data to be classified are provided during the training stage. Instead, ZSL uses additional information learned about the domain, and relies upon transfer learning algorithms to infer knowledge about the missing instances. ZSL approaches are an attractive solution for sparse datasets. Here we outline a model to identify the materials with which a work of art was created, by learning the relationship between English descriptions of the subject of a piece and its composite materials. After experimenting with a range of hyper-parameters, we produce a model which is capable of correctly identifying the materials used on pieces from an entirely distinct museum dataset. This model returned a classification accuracy of 48.42% on 5,000 artworks taken from the Tate collection, which is distinct from the Rijksmuseum network used to create and train our model.

View on arXiv
Comments on this paper